OBSERVATIONS & RECOMMENDATIONS After reviewing data collected from **MILLEN POND**, **WASHINGTON**, the program coordinators have made the following observations and recommendations: Thank you for your continued hard work sampling the lake/pond this season! Your monitoring group sampled **three** times this season and has done so for many years! As you know, with multiple sampling events each season, we will be able to more accurately detect changes in water quality. Keep up the good work! We would like to encourage your monitoring group to formally participate in the DES Weed Watchers program, a volunteer program dedicated to monitoring the lakes and ponds for the presence of exotic This program only involves a small amount of time aquatic plants. during the summer months. Volunteers survey their waterbody once a month from June through September. To survey, volunteers slowly boat, or even snorkel, around the perimeter of the waterbody and any islands it may contain. Using the materials provided in the Weed Watchers Kit, volunteers look for any species that are of suspicion. After a trip or two around the waterbody, volunteers will have a good knowledge of its plant community and will immediately notice even the most subtle changes. If a suspicious plant is found, the volunteers will send a specimen to DES for identification. If the plant specimen is an exotic, a biologist will visit the site to determine the extent of the problem and to formulate a plan of action to control the nuisance infestation. Remember that early detection is the key to controlling the spread of exotic plants. If you would like to help protect your lake or pond from exotic plants, contact Amy Smagula, Exotic Species Program Coordinator, at 271-2248 or visit the Weed Watchers web page at www.des.state.nh.us/wmb/exoticspecies/survey.htm. #### FIGURE INTERPRETATION ➤ **Figure 1 and Table 1:** The graphs in Figure 1 (Appendix A) show the historical and current year chlorophyll-a concentration in the water column. Table 1 (Appendix B) lists the maximum, minimum, and mean concentration for each sampling season that the lake/pond has been monitored through the program. Chlorophyll-a, a pigment found in plants, is an indicator of the algal abundance. Because algae are usually microscopic plants that contain chlorophyll-a, and are naturally found in lake ecosystems, the chlorophyll-a concentration measured in the water gives an estimation of the algal concentration or lake productivity. **The mean (average)** summer chlorophyll-a concentration for New Hampshire's lakes and ponds is 7.02 mg/m³. The current year data (the top graph) show that the chlorophyll-a concentration *increased steadily* from **July** to **September**. The chlorophyll-a concentration on **each sampling event** was **much less than** the state mean. The historical data (the bottom graph) show that the 2004 chlorophyll-a mean is **much less than** the state mean. Overall, the statistical analysis of the historical data (the bottom graph) show that the mean annual chlorophyll-a concentration has **not significantly changed** (either *increased* or *decreased*) since monitoring began. Specifically, the chlorophyll-a concentration has remained **relatively stable**, **ranging between approximately 1 and 2 mg/m³ since 1996.** With the exception of a spike of approximately 5 in 1995, this range has been **much less than** the state mean, since **1995**. (Note: Please refer to Appendix E for the detailed statistical analysis explanation and data print out.) ➤ **Figure 2 and Table 3:** The graphs in Figure 2 (Appendix A) show historical and current year data for lake/pond transparency. Table 3 (Appendix B) lists the maximum, minimum and mean transparency data for each sampling season that the lake/pond has been monitored through the program. Volunteer monitors use the Secchi-disk, a 20 cm disk with alternating black and white quadrants, to measure water clarity (how far a person can see into the water). Transparency, a measure of water clarity, can be affected by the amount of algae and sediment from erosion, as well as the natural colors of the water. **The mean (average) summer transparency for New Hampshire's lakes and ponds is 3.7 meters.** The current year data (the top graph) show that the in-lake transparency *increased slightly* from July to August, and then *decreased slightly* from August to September. The transparency on each sampling event in June, July, and August was *much greater than* the state mean. The historical data (the bottom graph) show that the 2004 mean transparency is **much greater than** the state mean. Overall, the statistical analysis of the historical data (the bottom graph) shows that the mean annual in-lake transparency has **not significantly changed** (either *increased* or *decreased*) since monitoring began. Specifically, the in-lake transparency has remained **relatively stable**, **ranging between approximately 6 and 7 meters**, which is **much greater than** the state mean, since **1995**. (Note: Please refer to Appendix E for the statistical analysis explanation and data print out.) Figure 3 and Table 8: The graphs in Figure 3 (Appendix A) show the amounts of phosphorus in the epilimnion (the upper layer) and the hypolimnion (the lower layer); the inset graphs show current year data. Table 8 (Appendix B) lists the annual maximum, minimum, and median concentration for each deep spot layer and each tributary since the lake/pond has joined the program. Phosphorus is the limiting nutrient for plant and algae growth in New Hampshire's freshwater lakes and ponds. Too much phosphorus in a lake/pond can lead to increases in plant and algal growth over time. The median summer total phosphorus concentration in the epilimnion (upper layer) of New Hampshire's lakes and ponds is 12 ug/L. The median summer phosphorus concentration in the hypolimnion (lower layer) is 14 ug/L. The current year data for the epilimnion (the top inset graph) show that the phosphorus concentration **decreased slightly** from **July** to **August**, and then **remained stable** from **August** to **September**. The phosphorus concentration on **each sampling event** and was **less than** the state median. The current year data for the hypolimnion (the bottom inset graph) show that the phosphorus concentration **remained relatively stable** from **July** to **September**. The phosphorus concentration on **each sampling event** was **less than** the state median. Overall, the statistical analysis of the historical data shows that the phosphorus concentration in the epilimnion (upper layer) and the hypolimnion (lower layer) has **not significantly changed** since monitoring began. Specifically, the phosphorus concentration in the epilimnion has **fluctuated between approximately 13 and 5 ug/L** but has **not continually increased or decreased** since **1995**. The phosphorus concentration in the hypolimnion has **fluctuated between 9 and 5 ug/L** but has **not continually increased or decreased** since **1995**. (Note: Please refer to Appendix E for the detailed statistical analysis explanation and data print out.) #### TABLE INTERPRETATION ## > Table 2: Phytoplankton Table 2 (Appendix B) lists the current and historical phytoplankton species observed in the lake/pond. Specifically, this table lists the three most dominant phytoplankton species observed in the sample and their relative abundance in the sample. In addition, this table has been enhanced this year to include the overall phytoplankton cell abundance rating of the sample. The overall phytoplankton cell abundance in a sample is calculated using a formula based on the relationship that DES biologists have observed over the years regarding phytoplankton concentrations, algal concentrations, and biological productivity in New Hampshire's lakes and ponds. mathematical equation is used to classify the overall abundance of phytoplankton cells in a sample into the following categories: sparse, scattered, moderate, common, abundant, and very abundant. Generally, the more phytoplankton cells there are in a sample, the higher the chlorophyll concentration and the higher the biological productivity of the lake. The dominant phytoplankton species observed in the **August** sample were *Chrysosphaerella* (golden-brown algae), *Rhizosolenia* (diatom), and *Synura* (golden-brown algae). The overall abundance of rating phytoplankton cells in the sample was calculated to be **scattered**. Phytoplankton populations undergo a natural succession during the growing season (Please refer to the "Biological Monitoring Parameters" section of this report for a more detailed explanation regarding seasonal plankton succession). Diatoms and golden-brown algae are typical in New Hampshire's less productive lakes and ponds. #### Table 2: Cyanobacteria A very small amount of the cyanobacterium Anabaena was observed in the plankton sample this season. This species, if present in large amounts, can be toxic to livestock, wildlife, pets, and humans. (Please refer to the "Biological Monitoring Parameters" section of this report for a more detailed explanation regarding cyanobacteria). Cyanobacteria can reach nuisance levels when phosphorus loading from the watershed to surface waters is increased (this is often caused by rain events) and favorable environmental conditions occur (such as a period of sunny, warm weather). The presence of cyanobacteria serves as a reminder of the lake's/pond's delicate balance. Watershed residents should continue to act proactively to reduce nutrient loading to the lake/pond by eliminating fertilizer use on lawns, keeping the lake/pond shoreline natural, re-vegetating cleared areas within the watershed, and properly maintaining septic systems and roads. In addition, residents should also observe the lake/pond in September and October during the time of fall turnover (lake mixing) to document any algal blooms that may occur. Cyanobacteria have the ability to regulate their depth in the water column by producing or releasing gas from vesicles. However, occasionally lake mixing can affect their buoyancy and cause them to rise to the surface and bloom. Wind and currents tend to "pile" cyanobacteria into scums that accumulate in one section of the lake/pond. If a fall bloom occurs, please collect a sample (any clean jar or bottle will be suitable) and contact the VLAP Coordinator. #### > Table 4: pH Table 4 (Appendix B) presents the in-lake and tributary current year and historical pH data. pH is measured on a logarithmic scale of 0 (acidic) to 14 (basic). pH is important to the survival and reproduction of fish and other aquatic life. A pH below 6.0 limits the growth and reproduction of fish. A pH between 6.0 and 7.0 is ideal for fish. The mean pH value for the epilimnion (upper layer) in New Hampshire's lakes and ponds is **6.6**, which indicates that the surface waters in the state are slightly acidic. For a more detailed explanation regarding pH, please refer to the "Chemical Monitoring Parameters" section of this report. The mean pH at the deep spot this season ranged from **5.73** in the hypolimnion to **5.81** in the epilimnion, which means that the water is **slightly acidic.** It is important to point out that the pH in the hypolimnion (lower layer) was *lower (more acidic)* than in the epilimnion (upper layer). This increase in acidity near the lake bottom is likely due the decomposition of organic matter and the release of acidic by-products into the water column. Due to the presence of granite bedrock in the state and acid deposition (from snowmelt, rainfall, and atmospheric particulates) in New Hampshire, there is not much that can be done to effectively increase lake/pond pH. #### > Table 5: Acid Neutralizing Capacity Table 5 (Appendix B) presents the current year and historical epilimnetic ANC for each year the lake/pond has been monitored through VLAP. Buffering capacity (ANC) describes the ability of a solution to resist changes in pH by neutralizing the acidic input. The mean ANC value for New Hampshire's lakes and ponds is **6.6 mg/L**, which indicates that many lakes and ponds in the state are at least "moderately vulnerable" to acidic inputs. For a more detailed explanation, please refer to the "Chemical Monitoring Parameters" section of this report. The mean Acid Neutralizing Capacity (ANC) of the epilimnion (the upper layer) was **0.4 mg/L** this season, which is **much less than** the state mean. In addition, this indicates that the lake/pond is **extremely vulnerable** to acidic inputs (such as acid precipitation). #### > Table 6: Conductivity Table 6 (Appendix B) presents the current and historical conductivity values for tributaries and in-lake data. Conductivity is the numerical expression of the ability of water to carry an electric current (which is determined by the number of negatively charged ions from metals, salts, and minerals in the water column). The mean conductivity value for New Hampshire's lakes and ponds is **59.4 uMhos/cm**. For a more detailed explanation, please refer to the "Chemical Monitoring Parameters" section of this report. The mean annual conductivity in the epilimnion at the deep spot this season was **43.65 uMhos/cm**, which is *slightly less than* the state mean. The conductivity has *increased* in the lake/pond and inlets since monitoring began. The in-lake conductivity is still *slightly less than* the state mean; however, this increasing (meaning worsening) trend is of some concern. Typically, sources of increased conductivity are due to human activity. These activities include septic systems, agricultural runoff, and road runoff (which contains road salt during the spring snow melt). New development in the watershed can alter runoff patterns and expose new soil and bedrock areas, which could contribute to increasing conductivity. In addition, natural sources, such as iron and manganese deposits in bedrock, can influence conductivity. We recommend that your monitoring group conduct a shoreline conductivity survey of the lake and the tributaries to help pinpoint the sources of *elevated* conductivity. To learn how to conduct a shoreline or tributary conductivity survey, please refer to the 2004 "Special Topic Article" in Appendix D of this report. It is possible that de-icing materials applied to nearby roadways during the winter months may be influencing the conductivity in the lake/pond. In New Hampshire, the most commonly used de-icing material is salt (sodium chloride). Therefore, we recommend that the **epilimnion** (upper layer) be sampled for chloride next season. We also recommend that your monitoring group sample the major inlets to lake/pond to determine the conductivity and chloride levels of the streamflow to the pond. This sampling may help us pinpoint what areas of the watershed are contributing to the increasing in-lake conductivity. Please note that there will be an additional cost for each of the chloride samples and that these samples must be analyzed at the DES laboratory in Concord. In addition, it is best to conduct chloride sampling in the spring soon after the snow has melted. In addition, please read this year's Special Topic Article, "Conductivity is on the rise in New Hampshire's Lakes and Ponds: What is causing the increase and what can be done?" which is found in Appendix D of this report. This article may help your association understand what types of activities can lead to elevated conductivity and chloride levels and what residents can do to minimize this type of pollution. #### > Table 8: Total Phosphorus Table 8 (Appendix B) presents the current year and historical total phosphorus data for in-lake and tributary stations. Phosphorus is the nutrient that limits the algae's ability to grow and reproduce. Please refer to the "Chemical Monitoring Parameters" section of this report for a more detailed explanation. The phosphorus concentration in the **inlets** was **relatively low** this season, which is good news. However, we recommend that your monitoring group sample the major tributaries to the lake/pond soon after snow-melt and periodically during rain storms to determine if the phosphorus concentration is **elevated** in the tributaries during these times. Typically, the majority of nutrient loading to a lake/pond occurs in the spring during snowmelt and during intense rain storms that cause surface runoff and erosion within the watershed. For a detailed explanation on how to conduct rain event sampling please refer to the 2002 VLAP Annual Report "Special Topic Article" or contact the VLAP Coordinator. # > Table 9 and Table 10: Dissolved Oxygen and Temperature Data Table 9 (Appendix B) shows the dissolved oxygen/temperature profile(s) for the 2004 sampling season. Table 10 (Appendix B) shows the historical and current year dissolved oxygen concentration in the hypolimnion (lower layer). The presence of dissolved oxygen is vital to fish and amphibians in the water column and also to bottom-dwelling organisms. Please refer to the "Chemical Monitoring Parameters" section of this report for a more detailed explanation. The dissolved oxygen concentration was **high** at all depths sampled at the deep spot of the lake/pond. As thermally stratified lakes/ponds age, and as the summer progresses, oxygen typically becomes **depleted** in the hypolimnion (lower layer) by the process of decomposition. Specifically, the loss of oxygen in the hypolimnion results primarily from the process of biological oxidation of organic matter (i.e.; biological organisms use oxygen to break down organic matter), both in the water column and particularly at the bottom of the lake/pond where the water meets the sediment. The **high** oxygen level in the hypolimnion is a sign of the lake's/pond's overall good health. We hope this continues! #### > Table 11: Turbidity Table 11 (Appendix B) lists the current year and historical data for inlake and tributary turbidity. Turbidity in the water is caused by suspended matter, such as clay, silt, and algae. Water clarity is strongly influenced by turbidity. Please refer to the "Other Monitoring Parameters" section of this report for a more detailed explanation. The tributary and deep spot turbidity was **relatively low** this season which suggests that erosion may not be a major contributor of sediment and nutrient loading to the lake/pond. This is good news and we hope to see this trend continue. #### > Table 12: Bacteria (E.coli) Table 12 lists only the historical data for bacteria (*E.coli*) testing, as bacteria sampling was not conducted this season. (Please note that Table 12 now lists the maximum and minimum results for this season and for all past sampling seasons.) *E. coli* is a normal bacterium found in the large intestine of humans and other warmblooded animals. *E.coli* is used as an indicator organism because it is easily cultured and its presence in the water, in defined amounts, indicates that sewage **MAY** be present. If sewage is present in the water, potentially harmful disease-causing organisms **MAY** also be present. Bacteria sampling was not conducted during the 2004 sampling season. ### > Table 14: Current Year Biological and Chemical Raw Data This table is a new addition to the Annual Report. This table lists the most current sampling season results. Since the maximum, minimum, and annual mean values for each parameter are not shown on this table, this table displays the current year "raw" (meaning unprocessed) data. The results are sorted by station, depth zone (epilimnion, metalimnion, and hypolimnion) and parameter. #### > Table 15: Station Table This table is a new addition to the Annual Report. As of the Spring of 2004, all historical and current year VLAP data are included in the DES Environmental Monitoring Database (EMD). To facilitate the transfer of VLAP data into the EMD, a new station identification system had to be developed. While volunteer monitoring groups can still use the sampling station names that they have used in the past (and are most familiar with), an EMD station name also exists for each VLAP sampling location. For each station sampled at your lake or pond, Table 15 identifies what EMD station name corresponds to the station names you have used in the past and will continue to use in the future. #### **DATA QUALITY ASSURANCE AND CONTROL** #### **Annual Assessment Audit:** During the annual visit to your lake/pond, the biologist conducted a "Sampling Procedures Assessment Audit" for your monitoring group. Specifically, the biologist observed the performance of your monitoring group while sampling and filled out an assessment audit sheet to document the ability of the volunteer monitors to follow the proper field sampling procedures (as outlined in the VLAP Monitor's Field Manual). This assessment is used to identify any aspects of sample collection in which volunteer monitors fail to follow proper procedures, and also provides an opportunity for the biologist to retrain the volunteer monitors as necessary. This will ultimately ensure that the samples that the volunteer monitors collect are truly representative of actual lake and tributary conditions. Overall, your monitoring group did an **excellent** job collecting samples on the annual biologist visit this season! Specifically, the members of your monitoring group followed the proper field sampling procedures and there was no need for the biologist to provide additional training. Keep up the good work! #### **Sample Receipt Checklist:** Each time your monitoring group dropped off samples at the laboratory this summer, the laboratory staff completed a sample receipt checklist to assess and document if the volunteer monitors followed proper sampling techniques when collecting the samples. The purpose of the sample receipt checklist is to minimize, and hopefully eliminate, future reoccurrences of improper sampling techniques. Overall, the sample receipt checklist showed that your monitoring group did a **very good** job when collecting samples this season! Specifically, the members of your monitoring group followed the majority of the proper field sampling procedures when collecting and submitting samples to the laboratory. However, the laboratory did identify one aspect of sample collection that the volunteer monitors could improve upon, as follows: > **Sample bottle volume:** Please make sure to fill each sample bottle up to the neck of the bottle (where the bottle curves in). This will ensure that the laboratory staff will have enough sample water to conduct all of the necessary tests. Please be careful to not overflow the small brown bottle (total phosphorus bottle) since this bottle contains acid. If you do accidentally overflow the small brown bottle, please rinse your hands and the outside of the sample bottle and make a note of this on your field sampling sheet. The laboratory staff will put additional acid in the bottle in the laboratory to preserve the sample. #### **NOTES** ➤ **Biologist's Note (August 5, 2004):** Great job! You are an expert sampler! Keep up the good work!!! Thanks! #### **USEFUL RESOURCES** Acid Deposition Impacting New Hampshire's Ecosystems, NHDES Fact Sheet ARD-32, (603) 271-2975 or www.des.state.nh.us/factsheets/ard/ard-32.htm. Best Management Practices to Control Nonpoint Source Pollution: A Guide for Citizens and Town Officials, NHDES Booklet WD-03-42, (603) 271-2975. Best Management Practices for Well Drilling Operations, NHDES Fact Sheet WD-WSEB-21-4, (603) 271-2975 or www.des.nh.gov/factsheets/ws/ws-21-4.htm. Canada Geese Facts and Management Options, NHDES Fact Sheet BB-53, (603) 271-2975 or www.des.state.nh.us/factsheets/bb/bb-53.htm. Cyanobacteria in New Hampshire Waters Potential Dangers of Blue-Green Algae Blooms, NHDES Fact Sheet WMB-10, (603) 271-2975 or www.des.state.nh.us/factsheets/wmb/wmb-10.htm. Erosion Control for Construction in the Protected Shoreland Buffer Zone, NHDES Fact Sheet WD-SP-1, (603) 271-2975 or www.des.state.nh.us/factsheets/sp/sp-1.htm. Freshwater Jellyfish In New Hampshire, NHDES Fact Sheet WD-BB-5, (603) 271-2975 or www.des.state.nh.us/factsheets/bb/bb-51/htm. Impacts of Development Upon Stormwater Runoff, NHDES Fact Sheet WD-WQE-7, (603) 271-2975 or www.des.state.nh.us/factsheets/wqe/wqe-7.htm. *IPM:* An Alternative to Pesticides, NHDES Fact Sheet WD-SP-3, (603) 271-2975 or www.des.state.nh.us/factsheets/sp/sp-3.htm. *Iron Bacteria in Surface Water*, NHDES Fact Sheet WD-BB-18, (603) 271-2975 or www.des.state.nh.us/factsheets/bb/bb-18.htm. Lake Foam, NHDES Fact Sheet WD-BB-4, (603) 271-2975 or www.des.state.nh.us/factsheets/bb/bb-5.htm. Lake Protection Tips: Some Do's and Don'ts for Maintaining Healthy Lakes, NHDES Fact Sheet WD-BB-9, (603) 271-2975 or www.des.state.nh.us/factsheets/bb/bb-9.htm. Proper Lawn Care In the Protected Shoreland, The Comprehensive Shoreland Protection Act, NHDES Fact Sheet WD-SP-2, (603) 271-2975 or www.des.state.nh.us/factsheets/sp/sp-2.htm. Road Salt and Water Quality, NHDES Fact Sheet WD-WMB-4, (603) 271-2975 or www.des.state.nh.us/factsheets/wmb/wmb-4.htm. Sand Dumping - Beach Construction, NHDES Fact Sheet WD-BB-15, (603) 271-2975 or www.des.state.nh.us/factsheets/bb/bb-15.htm. Shorelands Under the Jurisdiction of the Comprehensive Shoreland Protection Act, NHDES Fact Sheet SP-4, (603) 271-2975 or www.des.state.nh.us/factsheets/sp/sp-4.htm. Soil Erosion and Sediment Control on Construction Sites, NHDES Fact Sheet WQE-6, (603) 271-2975 or www.des.state.nh.us/factsheets/wqe/wqe-6.htm. Swimmers Itch, NHDES Fact Sheet WD-BB-2, (603) 271-2975 or www.des.state.nh.us/factsheets/bb/bb-2.htm. Through the Looking Glass: A Field Guide to Aquatic Plants, North American Lake Management Society, 1988, (608) 233-2836 or www.nalms.org. Weed Watchers: An Association to Halt the Spread of Exotic Aquatic Plants, NHDES Fact Sheet WD-BB-4, (603) 271-2975 or www.des.state.nh.us/factsheets/bb/bb-4.htm.